Image Inpainting

Seunghoon Park

Microsoft Research Asia Visual Computing

06/30/2011

Contents

- Background
- Previous works
- Two papers
 - Space-Time Completion of Video (PAMI'07)[1]
 - PatchMatch: A Randomized Correspondence Algorithm for Structural Image Editing (SIGGRAPH'09)[2]

What is inpainting?

Goal: Fill in hole region in a 'visually plausible' way

Seunghoon Park

Previous work

• Partial Differential Equations (PDE) based (Bertalmio et al.[1])

- Limited to small gap

Previous work

• **Exempler(or Patch) based**(Criminisi et al.[4])

 Discontinuity in case of complex structures (e.g. curves or T(or X) conjunctions)

The first paper

• Space-Time Completion of Video (PAMI'07)[1]

Input

Output

Mask samples

Problem definition

- *I* : Input image
- $H \subseteq I$: Hole region \leftarrow
- $S = I \setminus H$: Source region \leftarrow

Fill in _H such that the resulting image ^{1*}
 will have as much *global visual coherence* with ^s

Completion as a global optimazation

Maximizing a global objective function

$$Coherence(I^{*}|S) = \prod_{p \in I^{*}} \max_{q \in S} sim(W_{p}, V_{q})$$

$$I^{*} : \text{Resulting image} sim(W_{p}, V_{q}) = e^{-\frac{d(W_{p}, V_{q})}{2\sigma^{2}}}$$

$$S : \text{Source region}$$

$$p, q : \text{pixel point}(x, y)$$

$$W_{p}, V_{q} : \text{fixed - sized windows centered around p and q}$$

$$d(W_{p}, V_{q}) = \sum_{(x, y)} \left\|W_{p}(x, y) - V_{q}(x, y)\right\|^{2}$$

Coherence maximization

- Two local conditions
 - 1. All windows $w_p^{\perp} \dots w_p^{k}$ containing p appear in the source region S:

$$\exists V^{i} \subseteq S, W^{i}_{p} = V^{i}$$

2. All those v^{1} ... v^{k} agree on the color value c at location p:

$$c = V^{i}(p) = V^{j}(p)$$

Iterative Scheme

- Search
 - 1. Let $\{W_p^i\}_{i=1}^k$ be all windows such that $p \in W_p^i$
 - 2. Find $\{v^i\} \subseteq s$ maximizing similarity measure

Iterative Scheme

• Vote

- Let $c^i \in V^i$ be the appropriate colors

, where
$$\omega_p^i = \alpha_p^i \cdot sim\left(W_p^i, V^i\right)$$

 $\alpha^{i} = \gamma^{-distTransf orm}$, γ : fixed constant

M is the highest mode from Mean - Shift algorithm

Seunghoon Park

Iterative Scheme

• Update

Repeated for every hole pixels

• Multiple iterations until converged

Problems

- Sensitive to filling order
 - Which pixels should be filled first?
 - Priority(c*D) introduced by Criminisi et al.[4]

Only confidence

Only data

Problems

• Expensive nearest neighbor search

	NN search	rest	Total					
Time[s]	383.95	0.743	384.693					
Percentage[%]	99.8	0.2	100					
During 1 iteration								

- Use approximate NN search to speed up

The second paper

 PatchMatch: A Randomized Correspondence Algorithm for Structural Image Editing (SIGGRAPH'09)[2]

(a) original

(b) hole+constraints

(c) hole filled

(d) constraints

(e) constrained retarget (f) reshuffle

Video

PatchMatch: A Randomized Correspondence Algorithm for Structural Image Editing

Connelly Barnes¹, Eli Shechtman^{2,3}, Adam Finkelstein¹, and Dan B Goldman²

> ¹Princeton University ²Adobe Systems ³University of Washington

Problem definition

Correspondence

Nearest Neighbor(NN) Field

PatchMatch algorithm

1. Initialization

Assign random values to the NN-field

PatchMatch algorithm

2. Propagation

 $f(x, y) = \arg \min_{D} \{ \text{ current, left, above } \}$

Seunghoon Park

PatchMatch algorithm

3. Random search

• Compare against the most popular method: kd-tree with approximate nearest neighbor matching

		*				
(a) originals	(b) random	(c) $\frac{1}{4}$ iteration	(d) $\frac{3}{4}$ iteration	(e) 1 iteration	(f) 2 iterations	(g) 5 iterations
		Time [s]		Memory [MB]		
	Megapixels	PatchMatch	kd-tree	PatchMatch	kd-tree	
	0.1	0.68	15.2	1.7	33.9	
	0.2	1.54	37.2	3.4	68.9	
	0.35	2.65	87.7	5.6	118.3	
6/30/2011		•	Seunghoon Park		I	24

• Application to image reshuffling

• Application to image inpainting

Summary

- Global coherence optimization
 - An unified idea used to complete hole regions in both image and video
- Propagation and random search
 - Accelerate the nearest neighbor search based on patches

Q&A

References

[1] M. Bertalmio, G. Sapiro, V. Caselles and C. Ballester,
 "Image Inpainting",
 Proceedings of the 27th annual conference on Computer graphics and interactive techniques,
 2000, 417-424

- [2] Y. Wexler, E. Shechtman and M. Irani,
 "Space-Time Completion of Video",
 IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29, 463 -476
- [3] C. Barnes, E. Shechtman, A. Finkelstein and D. B. Goldman,
 "PatchMatch: A Randomized Correspondence Algorithm for Structural Image Editing", ACM Transactions on Graphics (Proc. SIGGRAPH), 2009, 28, 24:1-24:11

 [4] A. Criminisi, P. Perez and K. Toyama
 "Region Filling and Object Removal by Exemplar-Based Image Inpainting" IEEE Transactions on Image Processing, 2004, 13, 1200 -1212

References

[5] J. Sun, L. Yuan, J. Jia & H.-Y. Shum

"Image Completion with Structure Propagation" ACM Transactions on Graphics (SIGGRAPH), **2005**, 24, 861-868

 [6] J. Hays and A. A. Efros
 "Scene Completion Using Millions of Photographs" ACM Transactions on Graphics (SIGGRAPH), 2007, 26

 [7] C. Barnes, E. Shechtman, D. B. Goldman & A. Finkelstein
 "The Generalized PatchMatch Correspondence Algorithm" *European Conference on Computer Vision*, 2010