
CIS520 Final Project Report

Team Stella {Sung Joon Kim, Soohyun Lee, Seunghoon Park}

Department of Computer and Information Science
University of Pennsylvania

{ksung,soohyunl,seupark}@seas.upenn.edu

1 Introduction
 After we beat the baseline Naive Bayes model Quiz score of 1.4171 RMSE,
and reached the minimum Quiz score threshold of 1.05 RMSE using liblinear library,
we tried out several different approaches we learned from class: SVM, random
projection, bigrams, and generative approach with different combinations of
parameters. Through these different combinations of runs, we have had diverse
range of RMSE values and accuracies, and we analyzed the behavior of our
approaches according to these various results. More detailed explanation and
analysis can be found in the upcoming sections.

2 Methods

2.1 SVM

2.1.1 Approach

 For this approach, we used the liblinear library on the basic data X composed
of 62,771 reviews and 89,259 word counts on each review, different solvers and
used 5-fold Cross-Validation to find the best parameters.

2.1.2 Analysis

Type of Solver RMSE from the leadearboard

L2-regularized L2-loss
support vector classification (dual)

1.1147

L2-regularized L1-loss
support vector classification (dual)

1.0231

multi-class support vector classification
by Crammer and Singer

1.2089

L1-regularized L2-loss
support vector classification

1.08

 The solver ‘L2-regularized L1-loss’ had better (lower) RMSE compared to that
of ‘L2-regularized L2-loss support vector classification (dual)’. We came to this
conclusion because we tried several different distance measures, and this happened
to be the best fit for these bag-of-words features that are just the numbers of word
occurrences.

2.2 PCA using Random Projection

2.2.1 Approach

First of all, it should be noted here that if we use PCA method to reduce the
feature dimension, the data X, a N-by-M matrix where N is the number of examples
and M is the number of features, becomes a non-sparse matrix. This is a big
problem from the point of view of implementation, since we used the property of
sparsity from the basic bag-of-words features to minimize the usage of memory and
to speed up using liblinear library instead of libsvm library. For example, a basic X
for training data using bag-of-words features is a 62,771x89,259 sparse matrix
using 64MB. Let’s suppose we reduce the number of features to 9,000 which is
about the one tenth. Even in this case, we need to store a 62,771x9,000 non-sparse
matrix that needs 62,771 * 9,000 * 8 bytes = 4.2GB which is too large to deal with it
on our BIGLAB machine and it also takes too long to learn a model since we can’t
use liblinear anymore. Thus, we decided to reduce both the number of training
examples and the number of features.

To reduce the number of examples, we incorporated the ‘helpful’ data given
in the training set. Only 26,719 reviews had a ratio of 1,the number of positive votes
divided by the number of total people who voted. This is fine from the point of view of
memory usage, but we realized that it takes at least a few days even after extremely
reducing the feature dimension to 300. Thus, we applied one more heuristic which is
to sample a half of them based on the same distribution of the ratings of 26,719
examples.

Before applying the random projection algorithm directly to the matrix with the
reduced number of examples, we selected the first 6,900 features that appear at the
beginning of the list in decreasing order based on the weight values that can be
achieved by learning a model using SVM on the basic matrix.

To reduce the feature dimension further, we applied Random Projection
algorithm to the matrix X achieved after the above two pre-prosessings. A brief
explanation for the procedures is the following: we compute the production XR,
13,360x300 matrix, where R is a random 6,900-by-300 matrix by sampling numbers
randomly from the normal distribution with the mean of 0 and the variance of 1 and
normalize each column to have unit length.

2.2.2 Analysis

 The result of this approach, RMSE=1.2206 from the leaderboard, was worse
than learning a SVM model on the basic 62,771x89,259 that gives RMSE=0.9422.
To figure out why this didn’t improve the performance, we inspected the data deeply
and made some charts to visualize it.

Figure 1

 The Figure 1(a) shows the accuracy from the 5-fold Cross-Validation using
only a few top features with the largest weights from the model learned by SVM on
the basic matrix X. As you can see, about 80,000 words after the first 6,900 words
don’t improve accuracy so much. This is why we discarded the rest of words. The
Figure 1(b) shows the largest 500 eigen values of 6,900 words from SVD. Similarly,
300 is enough number of features to capture the principle components.

'Excellent' 'Great' 'Best' 'stars' 'Good' 'waste' 'Perfect' 'worst' 'Awesome'
excellent' 'Works' 'Other' 'best' 'Love' 'Poor' 'poor' 'amazing' 'terrible' 'junk'
LOVE' 'complaint' 'Otherwise' 'Overall' 'love' 'loves' 'Disappointed' 'Horrible'
'However' 'returned' 'return' 'Not' 'useless' 'awesome' 'Outstanding' 'perfect'
'Fantastic' 'Amazing' 'fantastic' 'GREAT' 'Wonderful' 'great' 'disappointing'
'disappointment' 'returning' 'Highly' 'disappointed' 'horrible' 'Thank' 'Easy' 'pleased'

 The above word list shows the top 50 features with the largest weight values
among those 6,900 features. The words seem to be reasonable to represent the
good or bad reviews. One thing found from the list is that there are multiple words in
the list meaning that the basic vocabulary is case-sensitive, so we could merge
these words into one feature if the more time is given to us.

2.3 Bigrams

2.3.1 Approach

 Since we are dealing with reviews, which are basically texts, we thought
using the information about relationships between adjacent words would be helpful
when it comes to classifying arbitrary (unseen) reviews.
 Our first and straightforward approach was to use the liblinear library and
sparse matrix just like we did before, only by replacing the word_count and word_idx
with those of bigrams. With this approach we got 38.12% accuracy with 1.06 RMSE.
This result was somewhat better than what we had expected, but it seemed we can
improve this with more finer tuning of the data.

 The next approach we took was to use bigrams information along with
word_count. The reason we decided to incorporate word_count is to improve the
RMSE because we already had better RMSE only using the word_count and
word_idx for the checkpoint. Using this information and combining with bigrams
information seemed promising because we are using extra information based on the
already sound approach. The result was quite similar to the approach without using
the word_count.
 Based on these, we thought we needed some more information to boost up
the performance. The next idea we had was to use the title information because title
can be seen as a summary of the content, and this will certainly be helpful when the
classifiers are trained. So, by then, we used bigrams, word_count, and title. The
accuracy turned out to be 38.19%, which is slightly higher (but almost the same) as
the previous approach and the RMSE turned out to be 0.9916, which was
significantly better (lower).

In this approach, we did not normalize each column, and thought
normalizatoin itself may affect the result. So we came up with a pseudo-
normalization approach, by dividing each value of that column with the largest value
of that column. The result was a slight improvement of RMSE of 0.9243.

2.3.2 Analysis

 The first approach of replacing word information with bigram information was
the base case for this approach. Unfortunately, the second approach of using
additional word_count based on the first approach did not boost the performance.
The accuracy was almost the same, as well as the RMSE. We were expecting the
results to be better, but then realized there were reasons behind the results. We
looked into the data and soon realized that most of the occurrence of pair of words
are usually one. And even the ones that occur more than once had nothing to do
with the positive/negative words; the most common words were ‘this is’, ‘this product’
or category-specific word pairs. We concluded that we over-estimated the impact of
word pairs.
 However, we thought having some additional information may boost up the
performance, either accuracy or RMSE. The next thing we thought to be reasonable
was using the title as part of the training data, maybe as an extension of the context.
This is because people tend to summarize their reviews in the title, and the words
that will play a critical role in classifiers is highly likely to be included. We believed
that even if we don’t extract useful bigram information from reviews, we may have
some good/useful words included in the title. This happened to be on the right track
of improving the performance, and we obtained much better (lower) RMSE.

2.4 Generative

2.4.1 Approach

 Both the data with and without the bigrams were used separately to generate
predictions for ratings of the reviews.
 A unique part of this approach was to reconsider the multinomial classification
into a binary classification. Instead of predicting 1, 2, 4, or 5, we determined if the

reviews were rated good(4 or 5) or bad(1 or 2). Then we gave good reviews a
prediction of 4.5 and bad reviews a prediction of 1.5. In this way, if we can perfectly
determine if a review is good or bad, our RMSE will be 0.5, which is way below the
RMSE of the leaderboard.
 However, using bigrams only gave about 85% ~ 90% accuracy on
determining bad/good side. Since the cost of mistake is high, we tried to reduce the
error by combining generative approach with the result from SVM.

Also, to correct where original generative approach made mistakes, we used
some of the testing data as a training set for better prediction.

To further reduce the high cost of mistakes made by original approach, we
used quadgram to determine roughly where our classifier made error with bigram.

2.4.2 Analysis
 Original generative approach gave RMSE of 1.12. This meant 80 ~ 90%
accuracy. When SVM replaced some of the results of generative approach, about
3900 reviews were changed in their sides, and it produced RMSE 0.944. This meant
that about 2500 reviews were changed correctly, and the remaining 1400 reviews
were not supposed to be changed.
 To correct only the reviews that are supposed to be corrected, we tried using
some of the testing sets as training sets to learn more bigrams along with the
predictions on those testing sets. This way, we were able to correct about 1000
reviews that were supposed to be corrected, which was equivalent to about 2% of
entire errors on the test set because there are about 5000 reviews that we made
error on.
 To seek out the remaining errors, we used quadgram. Running quadgram
was slow so it was best for seeking out little portions of the test sets. We averaged
the results of the quadgram to that of SVM. Also we just guessed ‘3’ when quadgram
was really unsure to avoid making high RMSE because we saw that SVM was
unsure on those reviews, too. The total number of changed ratings was about 4000.
Some of them included ratings of 3. Few of them were incorrectly changed.
 We tried using the test set as training set to seek out the remaning errors.
This effort, however, failed miserably maybe due to the errors in the ‘training set’
made from the test set. Almost all the changes made by such approach outside the
portion of 1000 reviews were incorrect.
 The final RMSE of the combined methods was 0.9226, which meant that we
reduced the cost of the mistakes from the original generative approach. The benefits
of looking at the problem as a binary classification was gaining insights on how much
we were good at classifying the data into good or bad side, and also being able to
hypothesize on what RMSE we are going to get just using calculations and without
any cross-validation.

