
CIS 580, Machine Perception, Spring 2012: Final
24-hour take-home exam

April 26, 3pm - April 27, 3pm

• Collaborations are strictly prohibited.

• This is an open book/Internet exam. Please reference your sources when you use a formula.

• You can use Matlab code to produce plots or to aid your calculations if you cannot proceed any further by hand.

• In the questions we asked you for MATLAB code, please insert the code into your PDF document.

Solutions (hand calculations, plots) have to be submitted electronically using turnin.

1 Short questions [20 points]
1. [7 points] Consider the pan-tilt unit (PTU) shown in figure 1. If Pw, Pc ∈ R

3 describe the same physical point,
respectively in world and camera coordinates, what are the rotation R ∈ SO(3) and the translation T ∈ R3 such
that Pw = RPc + T ? Notice that the camera center is not at the center of the pan rotation of α: this is why in
practice it is hard to simulate a pure camera rotation with a PTU.

Figure 1: A pan-tilt unit.
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2. Suppose we know the camera always moves (rotation and translation) in a plane parallel to the image plane.
Show that:

(a) [3 points] The essential matrix E = T̂R is of special form

E =

 0 0 a
0 0 b
c d 0

 , a, b, c, d ∈ R

(b) [4 points] Without using the SVD-based decomposition, find a solution to (R,T ) in terms of (a, b, c, d).

3. [2 points] Prove that for R ∈ SO(3) and a, b ∈ R3, R(a × b) = (Ra) × (Rb).

4. [4 points] Distance to a line in P2 Prove that for a line in P2 defined as {x̃ ∈ P2|x̃T l = 0}, the squared distance
of a point x ∈ R2 to the line in the projection plane is the following:

d2 =
(x̃T l)2

‖ê3l‖2
,

where x̃ = [x 1]T , e3 = [0 0 1] and ê3 is the hat matrix for e3.

2 3D Reconstruction from two 2D images [80 points]

Figure 2: The two images we will use in this problem. A few SIFT matches are shown on top of the images.

Your friend Satsok took some pictures of a castle he visited last summer, and he would love to turn them into a
3D miniature model of the castle. Having heard about your freshly learned computer vision skills, he gives you two
pictures (as shown in figure 2) and challenges you to find out where he was standing when he took them and what the
3D scene looks like. He gives you the following details:

• He took the two pictures with no zoom and he turned the auto-focus off: the two views share the same matrix of

intrinsics K =

 f 0 u0
0 f v0
0 0 1

.
• He doesn’t know f , u0, v0 but is willing to help you estimate them (part 2.1).

• You need to recover the 3D transformation (R,T ) between the two views, such that P1, P2 ∈ R
3 describe the

same scene point in frame 1 and 2, and P2 = RP1 + T .

We will use the following notations:

• The notation x = (x, y, 1) (homogeneous metric coordinates) will be used for calibrated projections:

P1 = λ1x1, P2 = λ2x2
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• The notation u = (u, v, 1) (homogeneous pixel coordinates) will be used for uncalibrated projections:

u1 ∼ Kx1, u2 ∼ Kx2

u ∼ Kx ⇔ u = f x + u0, v = f y + v0

• epi(x1) is the epipolar line in camera 2 corresponding to x1.

2.1 Calibration using vanishing points [20 points]
Your friend doesn’t know the intrinsics of the camera, but you know how to recover them: you ask him to take
pictures of a big calibration cube as shown in figure 3, using the same settings as when he took the castle pictures.
You then run your favorite corner detector on the images he gives you: the result of this process is stored for you in
calib_images.mat, load it and take a look at the calibration images (calib_images{i} for i = 1, . . . , 4).

Figure 3: Calibration box and detections of corner points.

1. You are going to use three orthogonal vanishing points v1, v2, v2 to estimate the focal length f and projection
center (u0, v0) as summarized in the lecture notes. You can use the notation vi = (vix, viy, viz) for the homogeneous
coordinates of the vanishing points (in the implementation you can normalize the coordinates so that viz = 1)

(a) [3 points] Explain why both the estimation of f and (u0, v0) from the vanishing points would fail if the
faces of the box (hence the vanishing points) were not orthogonal.

(b) [3 points] Why is calib_images{4} (shown to the right in figure 3) not the best choice of a calibration
image in terms of numerical stability?

(c) [3 points] For two different calibration images, will the vanishing points be roughly the same? Will f and
(u0, v0) be roughly the same?

2. [5 points] Focal length Show that s = 1
f 2 is the solution of a linear system as = b where you need to express

the 3 coefficients of the vectors a,b ∈ R3 as a function of the coordinates of v1, v2, v3. In practice, because of
noise, the coordinates of b are not exactly the ones of a all multiplied by the same value: you can solve the
least-squares problem mins∈R ‖as − b‖ by calling s = a\b in Matlab.

3. [5 points] Projection center in the image Recall that (u0, v0) is the orthocenter of v1, v2, v2. By using the
fact that the orthogonality x ⊥ y translates as the equation xT y = 0, show that (u0, v0) is the solution of a
least-squares problem. You can use the SVD decomposition method to solve it.

4. [8 points] Complete the function vanishingCalibration.m that takes a calibration image as an input, lets
you click on lines to estimate the vanishing points, and uses the positions of the vanishing points to estimate and
return the calibration matrix K. For the calibration images calib_images you should obtain something around
f = 552 and (u0, vo) should be at the center of the image. These are the same parameters as the ones used for
the pictures of the castle.

5. [3 points] If an image is scaled by a factor α (imresize(im,alpha) for instance in Matlab), what is the new
intrinsic matrix Kscaled compatible with the scaled image compared to the original K? This can be useful in case
you want to resize the images that your friend gives you and still know what intrinsics to use.
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2.2 Estimation of the essential matrix [23 points]
Now that you know the camera intrinsics f = 550 and (u0, v0) = (307.5, 205), you can attempt to reconstruct the scene
from the SIFT matchings in the two images (figure 2). The SIFT descriptors are simply computed and matched using
the VLFeat toolbox1, which you can download and extract to a folder of your choice, and load in Matlab with the
following command (use \ instead of / on a Windows machine):

run(’[path-to-vlfeat]/toolbox/vl_setup.m’);

That’s it! You should now be able to use function calls in reconstruct_script.m. Although all the calls to VLFeat
for SIFT extraction and matching are already done for you, you might want to take a quick look at the beautiful and
simple tutorial located at http://www.vlfeat.org/overview/sift.html. Start playing a bit with the first lines
of reconstruct_script.m to see what kind of inputs you will be using in your functions. Also, quickly read the
whole script to understand the overall pipeline.

1. [6 points] Least-squares estimation The script reconstruct_script.m extracts the positions of the matching
SIFT descriptors and feeds them to the function estimateEmatrix.m: complete the function so that it takes
two N × 2 matrices of matching points X1,X2 as input and estimates E using the SVD decomposition method
as in the 8-point algorithm described in the lecture notes and the “E-matrix” handout. Don’t forget to project
the E you obtain onto the space of essential matrices by redecomposing [U,S,V] = svd(E) and returning
Udiag(1, 1, 0)VT .

2. RANSAC estimation The estimation of E can be made much more robust by selecting pairs of points that
reach a common agreement: in this section you will implement a basic RANSAC algorithm to eliminate outliers
(spurious matchings) and obtain a better estimate of E.

(a) [3 points] One iteration of the algorithm uses the code from the previous question to estimate the essential
matrix E based on a random set of 8 correspondences, and then evaluates how good E is for the other pairs
(x1, x2). If E is perfect, for all pairs (x1, x2), x2 lies exactly on the epipolar epi(x1) computed from E and
x1. Therefore, we will use the distances to the epipolars as an error measure. Show that the distance of a
matching point to the epipolar is the following:

d(x2, epi(x1))2 =
(x2

T Ex1)2

‖ê3Ex1‖2
.

(b) [7 points] Complete the function estimateEmatrixRANSAC.m that takes a set of matching points and
estimates E using RANSAC. The algorithm steps are the following:

• Pick a random set of 8 pairs (you can use randperm), estimate E using them and compute the indi-
vidual residuals for all the other pairs (x1, x2): d(x2, epi(x1))2 + d(x1, epi(x2))2.

• Count how many residuals are lower than ε = 10−5 (consensus set), and if this count is the largest so
far, store the current estimate of E as the best estimate so far,

• Iterate as many times as needed according to the probability of failure (500 iterations should be
enough)

(c) Extra-credit (4pts): Use vectorized Matlab code to compute the residuals without for loops.

3. [7 points] Drawing the epipolar lines You can now use the essential matrix to plot epipolar lines in the images,
as shown in figure 4. Note that E defines epipolars for calibrated points (x1, x2). For the uncalibrated points, we
showed in class there is a perfectly identical relationship by substituting the fundamental matrix F to E:

x2
T Ex1 = u2

T K−T EK−1︸     ︷︷     ︸
F

u1 = 0⇔ u1 ∈ epiF(u2)

Complete the function drawEpipolarLines.m that draws the epipolar lines for a set of matching image points
(uncalibrated pixel coordinates). Note that you just need to fill in the equations, the “drawing” part is already
done for you.

1www.vlfeat.org
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Figure 4: Some epipolar lines in both images: for a given x1, the matching point x2 should be as close as possible to
epi(x1) and vice versa.

2.3 Pose recovery and 3D reconstruction [25 points]
It is now time to recover the transformation R,T between the two cameras. For a given estimate of E, remember that
there are two possible solutions for (T̂ ,R) (twisted pair ambiguity):

(T̂1,R1) =

(
URZ

(
π

2

)
ΣUT ,URZ

(
π

2

)T
VT

)
(T̂2,R2) =

(
URZ

(
−
π

2

)
ΣUT ,URZ

(
−
π

2

)T
VT

)

where (U,Σ,V) is the SVD decomposition of E and RZ

(
π
2

)
=

 0 −1 0
1 0 0
0 0 1

.
1. [4 points] Show that the third column of U has associated hat matrix URZ

(
+ π

2

)
U′. Also show that the opposite

of the third colum of U has associated hat matrix URZ

(
− π2

)
U′. Therefore, in the two solutions above, you can

output T instead of its hat matrix and simply use the third column of U and its opposite for T1 and T2.

2. [3 points] Show that the sign switch between RZ

(
+ π

2

)
and RZ

(
− π2

)
inside the decompositions of the solutions

is equivalent to a left-multiplication of the solutions by RT (π) where T is the third column of U.

3. [4 points] Complete the function poseCandidatesFromE.m that takes E as an input and returns four possible
solutions for (R,T ):

• the twisted pair for E,
• and the twisted pair for −E. This is because if we find E that satisfies all the epipolar constraints x1

T Ex2 =

0 (part 2.2), the opposite matrix −E also verifies the constraint since the right-hand side is zero, and we
don’t know a priori whether E or −E is the essential matrix we are looking for.

4. [4 points] Triangulation Given a candidate (Ri,Ti), we can now attempt to reconstruct all the points from
the pairs (x1, x2), and check whether (Ri,Ti) is the correct transformation (we need to pick one out of the four
candidates): we will pick the candidate (Ri,Ti) that has the highest number of reconstructed points in front
of both camera. Consider one of the matchings (x1, x2): we can reconstruct the 3D point by computing the
intersection of the two rays coming from camera 1 and 2:

λ2x2 = λ1Rx1 + T,

In practice, the equality doesn’t hold (the two rays don’t intersect perfectly) and you need to do a least square
estimation of λ1, λ2.

For a given pair (x1, x2), formulate the linear system such that
[
λ1
λ2

]
is its solution. Complete the part of

reconstruct3D.m that loops through the four transformation candidates (T,R) and all pairs (x1, x2), and solves
for the depths λ1, λ2.
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The selection of the right (T,R) out of the four possibilities is already coded for you but you should take a look
at it and make sure you understand it: we simply count for each candidate (Ti,Ri) how many points are in front
of both cameras (namely both λ1, λ2 > 0) and keep the transformation that achieves the maximum number.

5. [5 points] You can now run the whole pipeline in reconstruct_script.m to estimate the transformation
(T,R) between the two cameras and the relative positions of the 3D points. Figure 5 shows an example of output
from plotReconstruction.m, shown in the (X,Z) plane (we’re on top of the scene, looking down at it like a
street map). Note that all depths and the translation (baseline) are up to a scale.

6. [7 points] Complete the function showReprojections.m to compare image points in a given camera to the
reprojection of images points from the other camera. All you need to do in this function is apply the camera
projection model (and be careful about the expression of the 3D transform from 1 to 2 and from 2 to 1).

Figure 5: Top view of the the scene, coordinate are expressed in the frame of camera 2 (notice its center is at 0, 0).

6


	Short questions  20 [20 points] 
	3D Reconstruction from two 2D images  80 [80 points] 
	Calibration using vanishing points  20 [20 points] 
	Estimation of the essential matrix  23 [23 points] 
	Pose recovery and 3D reconstruction  25 [25 points] 


